
N90-24587
PULSED-DISCHARGE CARBON DIOXIDE LASERS

David V. Willetts

Royal Signals and Radar Establishment
Great Malvern, Worcs, UK

INTRODUCTION

The purpose of this review is to attempt a general introduction to pulsed carbon dioxide lasers of

the kind used or proposed for laser radar applications. There is a strong bias towards understanding
those features of operation which impact strongly on gas lifetime issues, and so a decision has been

made to omit mention of the theory of laser beams and resonators and the diffraction optics used to

describe them. Nevertheless, laser physics is an excellent example of a cross-disciplinary topic, and the

molecular spectroscopy, energy transfer, and plasma kinetics of the devices will be explored.

The review is structured to begin by introducing the concept of stimulated emission and

population inversions, leading on to the molecular spectroscopy of the CO 2 molecule. This is followed

by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation

processes which go on. Since the devices are plasma pumped it is necessary to introduce a complex
subject, but this is restricted to appropriate physics of glow discharges. Examples of representative

devices are shown, and the review concludes with the implications of the foregoing to plasma chemistry
and gas life.

STIMULATED EMISSION (Ref. 1)

Consider the two-level system shown in figure 1. Radiation of frequency E/h causes upward

transitions from level 1 to level 2 at a rate B12IN 1 where I is the intensity of illumination.

Spontaneous emission or collisions cause a dissipative loss from level 2 at a rate A21N2. The nett
effect of these processes is the well-known phenomenon of absorption of the incident radiation.

However, there is a further process of stimulated emission, akin to (stimulated) absorption, which

proceeds at a rate B21N2I. This is not observed with light of low intensity in thermal equilibrium,

because the upper state population (B12/A21)NII is exceedingly low under such conditions. However if

we can depart dramatically from thermal equilibrium and set up a condition where N 2 > N 1 (a

so-called population inversion), the emissive rate B21IN 2 exceeds absorption and the latter is replaced

by gain, a condition of negative absorption. This arises because it is possible to show by quantum
theory that B12 = B21 = B, so that

d, dl [ jdt - c _-_ c_ N 2 - N1 BI (1)

(which reduces to the familiar Beer's Law expression for absorption when N 2 << N1). Since the
phase, frequency, and direction of the emitted photons are, within uncertainty principle limits, identical

to those of the stimulating radiation, coherent addition results with amplification of the incident

radiation. With suitable feedback provided by mirrors, oscillation will result, and a coherent output

beam will be emitted if one of the feedback mirrors is made partially transmitting.

The arguments may be extended to multilevel systems by invoking the principle of detailed

balance (but note however that inversions, or departures from thermal equilibrium, are only possible on
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limited pairs of transitions). Then at thermal equilibrium the processes in figure 1 may be compared

with the Planck radiation law to give B12 = B21 as before, but also to show that
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independent of the oscillator strength which governs both A21 and B in the same way. We see from

equation (2) that spontaneous emission competes more and more successfully with stimulated emission as
the transition wavelength is reduced. It is for this reason that the first stimulated emissive devices

(Masers) were demonstrated in the microwave region and explains why there has been a trend to

shorter wavelengths with improving technology; X-ray laser operation is still problematic.

MOLECULAR SPECTROSCOPY OF CARBON DIOXIDE (Ref. 2)

Normal Modes of Vibration

A system of coupled oscillators, typified on the microscopic scale by a simple molecule, can in

general carry out a very complex Lissajous motion. It may be shown that all such motions arise from
the addition of excitations of 'normal modes' in the correct phase. Carbon dioxide is a linear

symmetric triatomic molecule and thus possesses three normal modes, illustrated schematically in figure

2. The bending mode is doubly degenerate. The modes are named and numbered as shown and some

insight into their frequencies c0i may be obtained by assumption of a simple valence force field model.
This model joins the point masses with springs which do not interact and which possess force constants

kb and ks for bending and linear extension respectively. Preserving linear momentum and assuming

simple harmonic motion leads to the relations
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C°l = ks/mo' c°22= kb" m ' _3 = ks m (3)
0 0

Despite the simplistic approximation (c03/c01 = 1.76; calc. = 1.91) these relations turn out to be very
useful for calculating isotopic shifts. The 'springs' have force constant k s of about 1000 dyne/cm, like

typical small man-made springs. The masses are of course very small, about 10-26g. Consequently

the vibration frequencies are over 1013 Hz.

Vibrational Energies

Solution of the Schrodinger equation for the parabolic potential of a harmonic oscillator yields

eigenvalues E i of (v i + di/2) _c0i, a ladder of equally spaced rungs, v i is the vibrational quantum
number and d i is the degeneracy of the level. Anharmonicity causes the ascending rungs to get closer

together. The energy level diagram of the low-lying vibrational states of CO 2 appears in figure 3.

States are labelled as (VlV2lV3) where I is the number of quanta of vibrational angular momentum in
the bend. The (100) and (02'0) states interact by Fermi resonance and so the resulting states are

mixed and shifted in energy, but this is normally ignored in labelling transitions. Subsequently it will
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be shownthat it is fairly easyto selectivelyexcite("pump") v3 = 1 to give inversionsover v1 = 1 or
v2 = 2. The resultingoscillationoccursin bandsat about9 and 10 micronswavelength. Isotopic
substitutionby 13C and/or 180shifts the vibrationallevelsby amountscomputablefrom the valence
force field resultswith a consequentsmallchangein oscillationfrequency. There is no longeran
automaticcoincidencewith the 626 'normal' isotopicCO2 presentin the atmosphere,with lessresultant
atmosphericabsorption. This can be of specialbenefitfor long-rangeremote-sensingsystems.
'Sequenceband' operationhasbeenobtainedon transitionssuchas (011)--)(110), in whichan extra
bendingquantumis presentin both lower and upper laserlevels;theseare shiftedto longerwavelength
than the (001)-_ (100)transitionsby anharmoniceffects.

RotationalStructure

The solutionof Schrodinger'sequationfor a rigid rotor yieldsa set of energylevelswhich are not
equallyspaced. To first order

Ej = BJ(J+I) (4)

where B - h
8_21c

and J is the rotational quantumnumber.

Sincemoleculescan vibrateand rotatetheir total energyis to a goodapproximationgivenby the sum
of the vibrationaland rotationalcontributions. Sincefrom the aboveformula rotationalquantaare
rathersmall - B is 0.39cm-1 for CO2 - the resultantenergylevel diagramis as shownin figure 4.
Here somestronglasertransitionsin the moleculeare included. Severalfeaturesare immediately
apparent. The selectionrule _l = t 1 is seento governthe changesin J; the transitionJ _ J+l
is termedthe R(J) line, whileJ _ J-1 is calledP(J). Alternatelevelsare missingdue to nuclear
spin statistics: the nuclearspinsof 160 and 180 are zero. The rotationaldependenceof the matrix
elementsgoverningthe oscillatorstrengthis roughlythe sameas the rotationaldegeneracy,so the
distributionof gain amongthe rotationallevelscloselyfollowsthe thermaldistribution,peakingat about
J = 20. Becauserotationalrelaxationand rotational- translationalenergytransfer is exceedinglyrapid,
the rotationallevelstend to thermaliseat the ambientgas temperature. The vibrationallevelsare
inverted,however,and this leadsto an enhancedgainon the P branchtransitions. Maximumgain
occursaroundP(20),whichdominatesthe outputunlessa dispersiveelementis placedwithin the laser
cavity to selectother transitions.

POPULATIONINVERSIONMECHANISMS(Ref.3)

ElectronImpact

AlthoughCO2 laserscan be pumpedby a varietyof means,the most importantis electrical,and
is the only methodto be consideredhere. Electronspresentin the 'glow discharge'type of plasma,
which will be discussedin moredetail later, impactmoleculesand in so doing losesomeof their
kinetic energyto excitationof the molecule. In the Born approximationfor electric-dipoletransitions,
the crosssectionsfor electronimpactexcitationare proportionalto the o_O_Q_ticalcrosssections,and thus
it wouldbe expectedthat the upper laserlevel could be populatedby this means. On the other hand,
neitherof the lower states(100)and (020)wouldbe populated;in the first casebecausethe vibration



inducesno dipole,and in the second because the selection rule Av = 1 would be broken. Thus it

should be possible to set up a population inversion by this selective excitation technique. Although the

Born approximation is not expected to be accurate for electrons of such low energy as encountered in

practice in glow discharges, the very first CO 2 laser to be operated did in fact depend on this pumping
scheme.

Resonance Transfer

It was soon discovered that a great enhancement in laser power output and efficiency could be obtained

by including nitrogen in the laser gas mixture. Energy transfer occurs from vibrationally excited
nitrogen (v = 1) to the CO 2 (v 3 = 1) level at a very high rate, 1.9 x 104 torr-lsec -1, because of the

extremely close coincidence in energy of these two states; the energy difference is only 18 cm -1. The

v = 1 level of nitrogen has a very long radiative lifetime since there is no dipole, and the

cross-section for electron impact excitation, shown in fig. 5, extends over a broad electron energy range

due, not to the forbidden dipole process, but to the existence of an unstable N_ state. N2(v = 1) is

thus a near-ideal energy transfer agent.

Relaxation Processes

The optical inactivity of the transition from ground state to lower laser levels has already been

mentioned. Thus the radiative lifetimes of these levels is very long, and some other process must be

found to empty these levels during laser action, otherwise the population inversion cannot be
maintained. Collisional relaxation is the key process; for instance, there is only a 50 cm -1 energy

mismatch in the processes

C02(100, 02"0) + CO2 (000) _ 2C02 (010) (5)

However it remains to find a rapid means of coilisionatly removing CO2(010) or even better the Iower

laser levels directly. At the same time collisional relaxation of the upper laser level, CO2(001 ), is

highly undesirable since it competes with the pumping process. Fortunately it is found that helium

fulfills these criteria admirably, and at the same time is chemically inert and provides an excellent

'buffer gas' in which to run the electric discharge.

Hence, CO 2 lasers are almost invariably operated in a gas mixture containing helium and nitrogen
as well as carbon dioxide; the former relaxes the lower laser level and the latter pumps the upper laser

level by resonant energy transfer.

PULSED GLOW DISCHARGES (Ref. 4)

Introduction

Numerous definitions of plasma exist; none are entirely satisfactory. For our purposes the

following will suffice: an ionised gas maintained in a steady state by an electric field driving a current

through it to balance the energy losses. The reader is probably familiar with several types of plasmas

such as arcs and glow discharges. Certain properties of the plasma required have already emerged
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from previoussections. The gastemperaturemustbe kept fairly low to avoid thermal population of

the lower laser level; the exact value depends on a number of parameters such as pumping rate but
certainly 100°C should be looked on as rather high. On the other hand, the electron energy required

to excite the vibrational states of nitrogen is 2-3 electron volts (see fig.5), which corresponds to an

electron temperature of order 30,000K. In fact the enormous mass ratio between electrons and
molecules leads to restricted energy exchange and it is indeed possible to produce a plasma which

departs from thermal equilibrium with an electron temperature of about l eV and a gas temperature

around ambient; it belongs to a class known as glow discharges. The gas mixture must contain CO 2
and nitrogen in roughly equal amounts, generally with an excess of helium. It has been experimentally

established that extraction of reasonable energy from a fairly compact device requires quite a high

molecular density, approaching or roughly equal to one atmosphere.

Steady-State Operation

A number of processes operate which ultimately lead to the mutual neutralisation of the separated

charges in a plasma, and the plasma can only exist in a steady state if the rate of production of ions

and free electrons balances these loss processes. The carbon dioxide laser can be operated using

continuously working or pulsed discharges; while all of the foregoing sections apply equally well to both

types, the discharge stability conditions are quite different and lead to quite different engineering

designs. In cw lasers, the loss process is predominantly ambipolar diffusion to the wall; in pulsed
devices there is insufficient time for this to happen and the plasma adjusts to a condition where

gas-phase recombination or electron attachment to neutral species dominate losses. We will now

investigate how the rates of these processes can be quantified in order to gain some insight into the
conditions within the plasma.

The ionisation rate by impact of plasma electrons may be obtained as follows. For a

monoenergetic stream of electrons of velocity ve and density ne passing through a gas of molecular

density N o and ionisation cross section per molecule Qi(v), simple kinetic theory gives an ionization rate
per unit volume Zi(v ) of

Z (v) = (6)i neNoVeQi(v)

Generalising to electrons distributed in energy such that f(e)dc is the fraction of n e in the range e to
e + de, we find

dZ. (7)1 = NoVeQidne

so that
co

Ze = neNo Qi (C)f(c)de

ci

or Z. = nN S.
1 e 0 1

where e i is the ionisation threshold energy.

(8)

(9)



If further the electrondistributionis Maxwellianwith a temperatureTe, then

-3/2
f

Figure 6 shows a typical shape of an ionisation cross-section and Maxwellian electron energy
distribution. We are concerned with the integral of the product of Qi(e) and f(_),and it is clear from

the diagram that under normal circumstances only the high energy tail of the distribution overlaps the
cross-section above threshold. Thus the Maxwellian provides the high energy cutoff to the integral,

which is not very sensitive to the shape of the ionisation cross-section Qi(e). The latter may be

approximated by any sensible function such as a step or linear ramp and it is always found that

, = Qi(max) i _ exp - [ei/kTe] (11)

where _ is a very slowly varying function of T e of order unity. Clearly ionisation of the species
having the lowest IP is strongly favoured in mixtures of gases and in the CO 2 laser mixture the

dominant ionisation will be of CO 2 itself. Of course just as many electrons will be formed as positive

ions in the process

e + CO2 _ CO2 + 2e (12)

so the ionisation rate is identical to the electron production rate. However, a series of complex

ion-molecule reactions ensure that CO_ is by no means necessarily the dominant positive ion in the

plasma. Equation 11 reveals that the ionisation rate rises dramatically with electron temperature, and

this is shown schematically in figure 7. Here typical attachment and recombination plots for CO 2 laser

gas mixtures are included. The attachment process

e + M --) M- (13)

suffers from the usual conservation restrictions, and processes such as dissociative attachment which are

not so impeded tend to predominate; e.g

e + CO2 _ CO + 0
(14)

These attachment processes have a threshold at lower energy than ionisation, so their T e dependence is

as shown in figure 7. Electron-ion recombination coefficients actually fall slowly with T e because
recombination is facilitated by the smaller the relative velocity and hence the longer the 'contact time'
between electron and ion. On the other hand the negative ion produced by electron attachment can

rapidly recombine with positive ions and be removed.



Self-SustainedOperation

With theseargumentsand by referringto figure 7 we are in a positionto understandthe
determinantsof electrontemperaturein real devices. Providedthat some'preionisation'(to be
discussedlater) is present,the dischargewill settledownafter applicationof sufficientvoltageto run at
point a, whereionisationbalancesattachment. Certainsubstancessuchas hydrogencauseelectron
'detachment'from negativeions thusreducingthe apparentattachmentcoefficientand operatingelectron
temperature. Under conditionsof strongdetachmentthe lossprocessesbecomedominatedby
recombinationand the self-sustaineddischargeoperatesat point c. SincekTe _-energygainedby
electron/meanfree path = eEX,whereE is the electricfield presentin the plasmaand the m.f.p X
Nol, we seethat there mustbe a one-to-one correspondencebetweenTe and E/No, the so-called
'reduced'electricfield. Consequently,the field at whichthe dischargeruns is not freely variablein the
self-sustainedregime,but is set by the electrontemperatureat which ionisationbalancesattachmentor
recombination. In typicalCO2 lasermixtures,E/N assumesa valueof 10-15 kV/cm atmosphere(3.7 -
5.6 x 10-16Vcm2). Note that the actualsteady-statevalueof ne, and thus dischargecurrent, hasnot
enteredthe discussion,and indeedthe currentis here determinedonly by externalcircuit restraintsand
can be variedwidelyat fixed voltage;valuesof order 200A/cm2 are not unusualin self-sustained
devices.

Electron-Beam-SustainedOperation

Calculationsof the type describedfor ionisationby electronimpactare trivially extendableto
other impactprocesses.If instead of the ionisation cross-section we use the vibrational excitation

cross-section for nitrogen shown in figure 5, we obtain the excitation rate essentially of the upper laser
level. Varying the electron temperature reveals that this process occurs with maximum efficiency at a

reduced field of near 4kV/cm atm (1.5 x 10-16Vcm2), much lower than typical self-sustained laser

operating points. If we could ionise the gas by some means other than electron impact by plasma

electrons of energy "_kTe, it may be possible to choose the reduced field, and thus operate at a more

optimal value. This can indeed be done by firing high energy electrons (E -_ 100 keV) through a thin

foil 'window' into the gas which is ionised by impact with these externally supplied projectiles. The

electron temperature may then be set by appropriate choice of an applied electric field which drifts the

'secondary' electrons and positive ions produced by the high-energy electrons towards the electrodes. If

the electron temperature is set below T c in figure 7, it is seen that recombination is the dominant loss

process. In the absence of detaching species, attachment dominates losses from T c to approaching Ta,
the point near which self-sustained operation takes over. As detaching species are added recombination

dominates the loss processes for increasing T e.

The steady-state operating current in externally-sustained discharges is not set by the external

circuit. For a primary electron transmitted at a current density of Jp, the ionisation and secondary
electron production rate is

dn

e

dt J - N (15)pe o

where cr is the collisional ionisation cross-section by high energy electrons. In the

attachment-dominated regime, the loss rate is

dn

e

dt _ N nO e
(16)



where/3is the attachmentcoefficient. Thus the equilibriumsecondaryelectrondensityis

J (7
P

n
e e_

(17)

and consequently the secondary current density Js amounts to

J (7

J = n ev P v (18)
s e

where _-is the drift velocity under the action of the applied field. We see that the secondary current

can be substantially greater than the primary, and the 'magnification ratio' M is

J
s (7 - (19)M -- V

J /3
P

M is typically of order one thousand. The discharge in this regime is ohmic, with an impedance Z of

Ed d [ 13 ] (20)
Z = _JsA A Jp(7#

i

where d and A are the discharge gap and area, respectively, and _ is the electron mobility v/E. The

discharge has conductivity (Jp(Tp//3), and its impedance is normally of order 10 ohms.

Stability Conditions

Self-sustained discharges are inherently unstable. Suppose a region of increased electron density
forms near one electrode. This will have an enhanced conductivity relative to the rest of the plasma
and will tend to 'short-out' some of the field in the gap. Consequently the field in the remainder of

the gap will be increased and so too will the ionization rate, which will exceed the loss rate and lead

to an uncontrolled growth of ne-- an 'avalanche'. Thus the region of increased ne grows until the
gap is bridged by a highly conducting streamer--an arc. Since the arc column is so highly conducting

it can sustain current densities many orders greater than glow discharges and so is normally constricted
in cross-section. Once established, the conductivity is so high that the electric field, and thus electron

temperature, are rather low, insufficient for electron-impact ionisation to exceed losses. On the other

hand ne is so high that collisions with neutral species are so frequent that thermalisation occurs, with
the gas temperature being greatly raised above ambient. Under these circumstances the ionisation is

maintained thermally ('Saha process').

Arcs are quite unsuitable for pumping carbon dioxide lasers due to the approximate equality of

their gas and electron temperatures; true thermal equilibrium is reached so a vibrational inversion
cannot be produced. The glow-to-arc transition described above is therefore highly undesirable, and

several techniques are used to avoid it. Firstly, the arc takes a small but finite time to develop (_- 1

_), so that it can be avoided if steps are taken to ensure that the glow discharge is of short duration;
low inductance and resistance capacitor-discharge circuits are required. Secondly, the electrode surfaces
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must be as smoothas possibleto avoid local field enhancementsdue to surfaceirregularities. Thirdly,
it is necessaryto 'preionise'the gasbeforeapplicationof the electric field with about107 electron
cm-3 to avoid the effectsof statisticalfluctuationson the initial startingavalancheprocesses.This is
generallyensuredby UV or X-ray photoionisationof the gas in the gap,or by photoelectricemission
from the electrodes. Conversely,specieswhich readilyattachelectronsincreasethe likelihoodof the
glow-to-arc transitionand shouldbe avoided. Oxygenis a goodexamplewith an upper limit for
stableoperationof lessthan 1%, and sinceit is producedby dissociationof the carbondioxide,this
processneedsto be minimised;it will be discussedat more length in the sectionon plasmachemistry.

Electron-beamsustaineddischargesare very stable. Fluctuationsin ne do not alter the ionization

rate since this depends on the injected flux of primary electrons; ionisation by secondary electron

impact is negligible since the electron temperature is chosen, by the appropriate impressed field, to be

low, and optimal for pumping N 2 (v = 1). Consequently these discharges are much more tolerant of

attaching species such as oxygen, and the limit is set by considerations of impedance mismatch of

discharge to pulse forming network or even of carbon dioxide loss. A typical value of several percents
of oxygen can be tolerated with graceful performance fall-off rather than catastrophic arcing.

REPRESENTATIVE DEVICES

With the scientific principles discussed, it is possible to examine engineering designs of pulsed

CO 2 lasers. Of course very large numbers of designs have evolved for specific applications; here
we consider a typical 'single shot' mini-TEA (transversely-excited atmospheric pressure configuration)
laser and an electron-beam sustained device, and then examine the consequences of operation at

significant repetition rates.

Mini-TEA Laser

Because operating fields increase with pressure, at one atmosphere the field in a self-sustained
laser is measured in tens of kilovolts per centimetre. In order to keep operating voltages at reasonable

levels, the discharge length along the field direction must be very short. This led to the development

of the transversely-excited atmospheric pressure configuration (TEA) with the field orthogonal to the

optical axis. A good example is the miniature TEA laser shown in figure 8, of the kind used for

tactical rangefinding. A typical discharge section is 1 x 1 x 10 cm and output energy 100 mJ. Profiled
electrodes ensure that the field nowhere exceeds that in the discharge. Preionisation is produced here

by a row of UV - emitting arcs running parallel to the profiled electrodes. A CO oxidation catalyst to

maintain gas life is placed somewhere within the, structure which is filled to 1 atmosphere with the

typical laser mixture, and the field is applied from a low inductance capacitor through a triggered

spark-gap switch (not shown). The resulting current pulse lasts only a few hundred nanoseconds,
insufficient time for the glow-arc transition to take place. The optical output consists of a short spike

of duration about 50ns in which most of the population inversion is destroyed, followed by a 'tail' of

duration about 1_ in which energy continues to transfer gradually from vibrationally excited nitrogen.

The energy loading of the discharge is limited to a few hundred Joules per litre by thermal population
of the lower laser level. The high operating electron temperature gives a multimode efficiency of

somewhat less than 10%, and a single mode efficiency rather lower still. Such a device offers very

simple construction, and can be operated at up to a few pulses per second without gas flow, when
convection and thermal diffusion occur fast enough to adequately cool the laser gas mixture.
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Electron-BeamSustainedLaser

Figure9 showsthe cross-sectionthroughan electron-beamsustaineddevice. This can be
operatedat the optimum4kV/cmatmosphereand give multimodeefficienciesin excessof 20%. The
constructionis muchmorecomplexthan self-sustaineddevices,however,and lendsitself bestto large
volumedischargeswhich canoperatestablyin this mode. An electrongun is neededto producethe
high energyprimary beam. This mayoperateby field emission,thermionicemission,or ion
bombardment,and at leastsomedesignscan run for tensof microseconds.Thus the facility existsfor
'long pulse' operationof the laser,with roughlyrectangularoutput pulsesof durationseveral
microsecondsor more. The high voltagepulseto the gun is often producedusinga pulsetransformer
and pulse-formingnetwork. Sincethe gun is a vacuumor very low pressuredevicethe foil separating
it from the main discharge(at about an atmosphere)must be well supported. Manyof the electrons
are stoppedby the foil (transmissionabout70%)so at appreciablerepetitionratesthe foil support
structuremust be cooled. Finishand profile of the electrodesare much lesscriticalthan for
self-sustaineddevicessincethe appliedfield is suchthat avalanchingis insignificant.

Repetition-RateOperation

Abovea pulserepetitionfrequency(prf) of a few Hz,diffusionand convectionare inadequateto
cool the gas,whichwill becomehotter with eachsuccessivepulseand laseraction will cease.
Fluctuationsin gasdensitywill causefluctuationin E/N, and thus alsoleadto dischargeinstability. It
is necessaryto deliberatelyforce gasaroundthe systemin a flow loop to renewthe mixturebetween
pulses. Figure 10 showsa schematiccross-sectionthroughsucha device. The flow is usually
transverse;ie. flow direction,opticalaxis, and electricfield are all orthogonal. The ductwork
incorporatesa heatexchangerto maintainthe gasat the requiredtemperatureand a catalystartifact to
oxidiseCO to CO2. The latter is normallyfitted closeto the dischargeon the downstreamsideto
enhancethe catalyticactivity by useof the unwantedgasheating. Somekind of fan or impelleris
built into the ductworkto circulatethe gasat the requiredrate, and to expeditethis processit is
important,especiallyat high prf, to minimisethe flow impedanceof the heatexchangerand catalyst.

PLASMACHEMISTRY(Ref.5)

Introduction

We havealreadyseenthat carbondioxidelasersare normallyfilled with a mixtureof nitrogen,
carbondioxide,and helium. In additionit is often difficult to entirelyeliminatewater vapourfrom the
laserenvelopesinceit is difficult to completelycleanmanyconstructionalmaterials. Althoughthese
appeara rather unpromisingset of reactants,they are subjectedin the plasmato a numberof
energeticprocessessuchaselectronimpactwhichcanexciteand dissociatemolecules. Furtherneutral
and ion-molecularreactionsthen ensueto give rise to interestingand importantchemicaleffects.
Obviouslythe lossof carbondioxideby dissociationto carbonmonoxideand oxygenis directly relevant,
but the subsequentoxidationof oxygenand nitrogento ozoneand NOx cangive rise to an oxygen
deficit for anycatalysisof the CO/O 2 recombination reaction. These and other processes will be
explored next.
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Carbon Dioxide Dissociation

There are known to be two channels for the dissociation of carbon dioxide by electron impact:

e + C02 _ CO + 0 + e (21a)

e + C02 _ C0 + O- (21b)

The former (21b) has a much larger cross-section but higher threshold than the dissociative attachment

process (21b), as shown in figure 11. The dissociation rate for any particular electron temperature may

be found using the formalism of equation 11. For self-sustained discharges reasonable agreement is
found between the measured dissociation rate, of order 1021 molecules/coulomb passed (dependent on

gas composition, device size, etc), and calculation assuming the process occurs in the bulk of the gas.

In this case the relatively high value of T e leads to the process (21a) being dominant. Electron-beam
sustained discharges are normally operated at a much lower electron temperature and the exponential in

equation 11 gives rise to very low calculated values of the bulk dissociation by either process.

Experimental measurements reported elsewhere in these proceedings, while much lower than comparable

self-sustained devices, are higher than the bulk calculations. The same experiments indicate that the

dissociation is occurring in the high T e region of the sheath associated with electron emission from the
cathode.

Knowledge of the dissociation rates, coupled with tolerance to dissociation products - namely

oxygen, since carbon monoxide does not attach - allows specification of the CO oxidation catalyst.

However there are other reactions which can occur with which the catalyst may have to deal.

Oxygen Loss

In experiments on both self-sustained and e-beam sustained CO 2 lasers, it has been observed

that, at least initially, carbon monoxide and oxygen are not formed in their correct stoichiometric ratio

of 2:1, but in a ratio greater than 2.0. This implies that oxygen is being lost to form other

compounds and is therefore unavailable for CO oxidation (although significant CO 2 loss has not been
observed in small TEA lasers up to 2 x 107 pulses). These processes therefore merit closer

examination, although at the time of writing limited experimental or theoretical progress has been made,

largely due to the complexities of the possible reactions. Once carbon dioxide dissociation has taken

place, two new species have been added to the gas, one of which, atomic oxygen, is particularly
reactive. The reverse reaction

0 + CO (+M) --_ CO2(+M) (22)

is spin forbidden and proceeds at a negligible rate. The rate constant for the three-body association of

oxygen atoms is high, reflecting the spin conservation of the process

0 + 0 (+M) _ 02 (+M) (23)
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Once molecular oxygen has been formed, it can undergo further reaction with atomic oxygen to form
ozone

0 + 0 2 (+M) _ 0 3 (+M) (24)

by a fast allowed process. Reaction of oxygen atoms with nitrogen to give nitrous oxide is spin
forbidden and to give nitric oxide and nitrogen atoms is highly endothermic; oxygen atoms do not react

with nitrogen. Nitrogen oxides are probably formed by several routes. The associative detachment
reaction

0 + N 2 -_ N20 + e (25)

can produce nitrous oxide from the small amounts of O- present in the plasma; the product is
probably immune to further oxidation. Nitrogen atoms formed by dissociative electron-ion

recombination of N_ undergo reactions of the kind

N + O + M _ NO + M (26)

followed by

NO + O + M _ NO 2 + M (27)

However once some ozone and nitrogen oxides are formed they are subject to destruction by such
processes as

NO + 03 --) NO2 + 02 (28)

O + NO2 _ NO + 02 (29)

so they do not reach high concentrations. Undoubtedly the complete reaction set is much more

complex, with three-body ion-molecule reactions probably playing an important part; unfortunately the

rate constants of the latter are not well known, only four being included out of 167 possible reactions in

one computer simulation! Nevertheless it would be useful to catalyse exothermic destruction reactions
such as

2NO + 2CO -_ N 2 + 2CO 2 (30)

and N20 + CO _ N 2 + CO 2 (31)

Designers of CO oxidation catalysts need therefore to allow for oxidation not just by oxygen, but also

the oxides of nitrogen and ozone.
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WaterVapourand HomogeneousCatalysis

While the direct associationof CO and oxygenatomstakesplaceat a negligiblerate, the reaction

OH+ CO -_ CO2 + H (32)

goes very quickly. Hydroxyl radicals can be formed readily from oxygen atoms in the presence of
water vapour by the process

0 + H20 _ 20H (33)

while the dissociative attachment and ionisation reactions

e + H20 --) OH + H- (34)

e + H20 _ OH + H+ + 2e (35)

also yield hydroxyl. Thus, carbon monoxide readily reacts with oxygen in the presence of water vapour
via reaction (32); the hydrogen atoms complete the chain via

H + 02 _ OH + O (36)

to regenerate hydroxyl, with the net reaction

CO + 02 --) CO 2 + O (37)

There is a plethora of further radical and atom loss processes analogous to those described in the

previous section, but the overall conclusion is that water vapour behaves as a very effective

homogeneous catalyst for carbon monoxide oxidation. It is to be expected that the plasma is the initial

source of hydroxyl radicals, both directly from processes (34) and (35) and via the formation of oxygen

atoms followed by (33). Thus the effectiveness of water vapour (or hydrogen, which readily reaches

equilibrium with water in the plasma) as a catalyst should depend on the plasma electron temperature.

Limited experimental work has been undertaken on homogeneous catalysis in CO 2 lasers, but it appears
that hydrogen and CO are effective discharge stabilisers in helium-rich mixtures but not in mixtures

containing little or no helium. This could be due to the difference in electron temperature, but it

must also be pointed out that these molecules are effective electron detachers from negative ions, and
thus tend to stabilise the discharge by this means also.
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Figure 2. Normal modes of the CO 2 molecule.
Frequencies are for the 626 isotope.
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